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 Abstract: Background: Methods for describing physics of impact and ballistics have been 
developed over a number of decades. These include analytical mathematical 
representations as well as modern computer simulations. 

Objective: Recent and historic developments towards modeling of impact phenomena 
pertinent to terminal ballistic events are summarized and compared. Two classes of 
physical problem are of focus: impact and penetration of metallic and/or ceramic targets by 
projectiles, and propagation of planar shock waves through solid material specimens 
induced by collision with flyer plates or by explosive loading. 

Method: The projectile-target problem is analyzed from perspectives of classical hydrodynamics, extensions 
accounting for strength, and fully resolved explicit dynamics simulations. The planar impact test is studied from 
perspectives of analytical solutions to Rankine-Hugoniot equations, steady wave analysis, and dynamic finite 
element simulations of shock waves in material microstructures. Key features of each approach are critically 
compared. 

Results: The two classes of physical problem are inherently related since material properties obtained from 
analysis of the latter experiments are typical input for models of the former problem involving ballistic 
penetration. Patents to computer methods and ballistic protection systems are noted. 

Conclusion: Reduced order models are shown to provide efficient, but often approximate, solutions giving 
insight into general trends. Modern, fully resolved calculations appear to be the only viable route to design and 
optimization of novel materials or structures with heterogeneous properties or complex geometries. 
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1. INTRODUCTION 

Impact and penetration mechanics are physical phenomena 
that are of high importance to defense and industrial 
applications, including those in mining, automotive, and 
aircraft industries [1, 2]. Furthermore, such phenomena, 
especially those involving hypervelocity impact, occur in 
problems relevant to geology and astronomy, e.g., collisions of 
planetary objects or space debris [3]. The present work is 
focused on problems in terminal ballistics, encompassing 
dynamic interactions of projectiles with their intended targets. 
The purpose of this paper is to categorize and compare various 
modeling strategies that describe a few characteristic physical 
problems in terminal ballistics, noting the important features,  
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relative advantages and disadvantages, and key historic and 
modern references for each strategy. The intent is to provide a 
useful introductory reference for researchers beginning work in 
the area, as well as a source of important equations and 
references for scientists and engineers more experienced in the 
fields of ballistics and shock physics. However, no attempt is 
made to cite all relevant works dealing with any given topical 
area. 

Relevance of this work to recent patents in engineering is 
as follows. This paper covers modeling techniques---
formulation of governing differential equations and their 
analytical or numerical solutions---rather than development 
of new experimental/diagnostic devices, munitions, or 
protection systems. Although the content does not directly 
invoke technologies available in recent patents, it does 
supplement any such developments of new technologies. A 
recent patent for finite element computer methods used to 
obtain numerical solutions for problems involving large 
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deformations as occurring under impact loading is reported 
in [4]. Recent patents for ballistic technologies involving 
armor ceramics and shock mitigation include [5, 6]. Explicit 
listings of numerous other relevant patents for dynamic 
protection systems can be found in associated references to 
industrial and aerospace applications, for example [2, 3]. 

The first physical problem addressed is impact and 
penetration of a solid target, typically metallic or ceramic, by 
a projectile such as a bullet or rod at null obliquity, i.e., the 
velocity vector of the the projectile is normal to the plane of 
the impacted surface. A comprehensive book that deals with 
this problem and related others is [7], including 
experimental, analytical, and numerical methods of ballistics 
research. Similar lengthy references dealing with pertinent 
aspects include [8, 9]. In contrast, the present paper covers 
only models---analytical and numerical simulations---with 
experiments noted only in the context of description of the 
physical problems and validation of the analytical or 
numerical solutions. Thus, this paper is more concise and 
focused than these prior works, and it also includes coverage 
of more recent developments, particularly in areas of 
dimensional analysis [10, 11, 12, 13] and modern hydrocode 
simulations [14, 15, 16]. The present description of 
constitutive models of (poly)crystalline solids, of which 
projectile and target are comprised, is also more 
sophisticated than those given in the above-mentioned prior 
works, accounting for geometric and material nonlinearity 
[17]. 

The second physical problem addressed is the response 
of a (poly)crystalline solid body to dynamic loading by a 
planar shock wave. A standard method for studying the high 
pressure constitutive behavior of such a solid is the plate 
impact test, designed to induce this type of planar shock 
loading. Both the pressure-volume equation of state (EOS) 
and the shear strength of the solid can be inferred from 
results of this test, depending on diagnostics used. Spall 
fracture [18] properties can also be deduced if the 
experiment is designed for their interrogation. The EOS, 
strength, and fracture properties all may enter constitutive 
models for solids used in hydrocode simulations of terminal 
ballistic events. A comprehensive and lengthy reference 
covering experiments and analysis of planar shock loading is 
[19]. The present work places emphasis on brevity and 
recent developments in theory, modeling, and simulation. In 
particular, dynamic finite element simulations of shock 
propagation and/or spall fracture in polycrystalline 
microstructures (e.g., [20, 21]) predated by [18, 19] are 
incorporated herein. Such simulations can be used to relate 
structure to dynamic properties important for resistance to 
failure modes incurred during ballistic events, facilitating 
design of advanced material systems in protection sciences. 

For each of the two physical problems noted above, 
classes of modeling technique are evaluated in terms of 
flexibility, complexity, and predictive capability. Flexibility, 
which may also be termed generality, describes the ability of 
a model to represent a breadth of physical behaviors without 
fundamentally altering its governing equations. Complexity, 
i.e., sophistication, of a theory generally reflects how 
elaborate are the governing equations. Analytical solutions 
and numerical implementation become more challenging as 
complexity increases. Finally, predictive capability refers to 

a model's representation of real physical behavior with 
minimal calibration. A particular theory is considered more 
predictive than a competing model if it is able to better 
depict realistic physics with fewer fitting parameters or ad 
hoc equations [22, 23]. 

This paper is organized as follows. Section 2 addresses 
the ballistic penetration mechanics problem from standpoints 
of classical hydrodynamic (1-D) analysis, historic and 
recently extended (yet still reduced order, 1-D) analysis, and 
modern hydrocode simulations. Section 3 covers the planar 
shock problem, including analytical solutions to the 
governing equations for shock in 1-D, steady wave 
treatments (also 1-D, but usually requiring numerical 
solutions), and fully resolved explicit dynamic simulations 
(2-D or 3-D). Each section logically progresses from 
descriptions of lower to higher sophistication. Conclusions 
are given in Section 4, including a table summarizing the 
evaluations of each of the methods. 

Important mathematical relations pertinent to each 
modeling technique are presented throughout. Notation of 
continuum physics is used, with vectors and tensors written 
in bold italic font, and scalars and scalar components in italic 
font. When the index notation is used, the normal summation 
is implied for repeated indices. Other notation will be clear 
from context. 

2. BALLISTIC IMPACT AND PENETRATION 

Models for the mechanics of terminal ballistic events are 
now presented. In § 2.1, the classical 1-D hydrodynamic 
solution for steady penetration of a semi-infinite body by an 
eroding projectile is reviewed. In §2.2, extensions to this 
analysis are discussed, most of which remain 1-D but 
incorporate finite strength of the target and/or projectile. The 
modeling techniques discussed in § 2.1 and § 2.2 are 
necessarily restricted to the particular initial boundary value 
problem of impact and penetration of a rather long projectile 
(e.g., a rod or shaped charge jet) into a deep, and therefore 
confined, target. In contrast, the computational modeling 
framework presented and evaluated in §2.3 is capable of 
describing impact events in more complex physical systems, 
including 2-D (often axisymmetric) and 3-D geometries. 

2.1. Hydrodynamic Theory: Classical Analysis 

The governing equation for ideal hydrodynamic 
penetration of a semi-infinite target by a jet or rod is now 
derived. This derivation will be extended to more 
sophisticated models in §2.2. 

The ideal hydrodynamic theory of penetration of ductile 
targets by shaped charge jets was reported in the early paper of 
[24]. The derivation rests on the following primary 
assumptions: the penetration process is steady-state and one-
dimensional (1-D); the target is semi-infinite; the projectile is a 
continuous jet; and both target and projectile are 
incompressible with null shear strength, i.e., are effectively 
ideal fluids. 

Denote spatial coordinates at time 𝑡 by the vector-valued 
function 𝒙 = 𝒙(𝑿, 𝑡) , where reference coordinates of a 
material point are X. The particle velocity vector is the time 
derivative of position: 
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𝛖(𝑿, 𝑡) = *𝒙(𝑿,+)
*+

. (2.1) 

Let 𝛔  denote the symmetric Cauchy stress tensor, and 
with tr(⋅)  the trace operator, 𝑝 = − 3

4
tr𝝈  is the Cauchy 

pressure, positive in compression. The spatial mass density is 
𝜌(𝒙, 𝑡). In the absence of body forces, the local balance of 
linear momentum in classical continuum mechanics is [17]. 

∇ ⋅ 𝛔 = 𝜌𝛖, (2.2) 

where the superposed dot is a material time derivative and 
where ∇(⋅) is the gradient with respect to spatial coordinates. 
The particle acceleration is 

𝛖(𝒙, 𝑡) = *𝛖(𝒙,+)
*+

+ ∇𝛖(𝒙, 𝑡) ⋅ 𝛖(𝒙, 𝑡). (2.3) 

Under the aforementioned assumption of steady flow, 
𝛖(𝒙, 𝑡) → 𝛖(𝒙), and the first term on the right side of (2.3) 
vanishes, leading to 

𝛖(𝒙) = ∇𝛖(𝒙) ⋅ 𝛖(𝒙). (2.4) 

For steady 1-D flow, (2.2) becomes, with 𝜎(𝑥) =
−𝜎33(𝑥)  the axial stress, taken here as positive in 
compression, 

− 3
<
=>
=?
= 𝜐 =A

=?
⇒ −d𝜎 = 𝜌𝜐d𝜐. (2.5) 

Conservation of mass requires 

𝜌 = 𝜌∇ ⋅ 𝛖. (2.6) 

For incompressible flow, 𝜌[𝒙(𝑿, 𝑡), 𝑡] = 𝜌[𝒙(𝑿)]. 
The physical problem is now analyzed by assuming that 

an incompressible jet or rod with initial velocity 𝑉 strikes the 
target, an incompressible and infinite half-space. The 
stagnation point between projectile and target recedes with a 
velocity of magnitude 𝑈. The axial stress 𝑃 at the stagnation 
point in the projectile is obtained by integrating (2.5), with 
𝜌I the constant projectile density, leading to [25] 

− J
I d𝜎 = 𝜌I

I
KLM 𝜐d𝜐 ⇒ 𝑃 = 3

N
𝜌I(𝑉 − 𝑈)N. (2.7) 

Now considering the stagnation point in the target with 
mass density 𝜌O, 

− J
I d𝜎 = 𝜌O

I
M 𝜐d𝜐 ⇒ 𝑃 = 3

N
𝜌O𝑈N. (2.8) 

Finally, 𝑃  from (2.7) is set equal to 𝑃  from (2.8), and 
under the assumption of inviscid flow (no shear stress), 𝑝 =
𝑃 . The result is Bernoulli's equation for steady 
hydrodynamic penetration: 

𝑝 = 𝑃 = 3
N
𝜌I(𝑉 − 𝑈)N =

3
N
𝜌O𝑈N. (2.9) 

The time needed from first impact for a projectile of 
initial length 𝐿I to fully erode is 𝑡I = 𝐿I/(𝑈 − 𝑉), and the 
final depth of penetration is 𝑃I = 𝑈 ⋅ 𝑡I . From (2.9), the 
normalized depth of penetration can be obtained in terms of 
the ratio of constant mass densities of the target and 
projectile materials: 

JR
SR
= M

MLK
= <R

<T
. (2.10) 

The original intended subject of this equation was 
penetration of ductile metallic targets by ductile metallic jets, 
as in [24]. Subsequently, and often with some degree of 
success, (2.9) and (2.10) have been invoked to describe the 
steady penetration regime for long-rod projectiles (typically 
of high density and metallic origin) as well as brittle targets 
(e.g., ceramics). The advantage of this simple model is that it 
requires no fitting parameters whatsoever for the substances: 
only their density ratio need be known. The disadvantage is 
that it fails to account for effects of finite strength (i.e., shear 
stresses) and finite compressibility of either the projectile or 
the target, both of which may become important depending 
on the true geometry of the target and projectile, the 
materials involved, and the striking velocity. However, the 
ideal hydrodynamic solution provides a useful limiting case 
for comparisons with test data and for comparisons with 
more sophisticated analytical or numerical calculations. 

2.2. Hydrodynamic Theory: Extensions 

A vast number of 1-D analytical penetration mechanics 
theories have been based on extensions of the ideal 
hydrodynamic solution derived in §2.1. Several notable such 
models, termed reduced order theories, are now discussed in 
this work. 

Birkhoff et al. [24] modified the hydrodynamic theory to 
allow for jet particulation by using a shape factor 𝜆 that has a 
value of unity for continuous jets and a value of two for 
dispersed particle jets: 

𝜆𝜌I(𝑉 − 𝑈)N = 𝜌O𝑈N ⇒
JR
SR
= V<R

<T
. (2.11) 

Pack and Evans [26, 27] extended the solution in (2.10) 
to allow for secondary penetration, i.e., after-flow in addition 
to primary penetration, 𝑟 . These authors also included an 
empirical correction for nonzero target strength 𝑌O: 

JR
SR
= V<R

<T
1 − 𝑎 [T

<RK\
+ ]

SR
. (2.12) 

In this theory, the scalar function 𝑎  is permitted to 
depend on target and jet densities, and 𝑎𝑌O/(𝜌I𝑉N) = 𝑘𝑅 , 
with 𝑘 an empirical factor and 𝑅 the work per unit volume 
required for crater formation. Eichelberger [28] added to 
(2.9) an empirical statistical correction parameter 𝛾, and also 
incorporated the net strength difference 𝑌a = 𝑌O − 𝑌I, with 
𝑌I the jet/projectile strength: 

𝛾𝜌I(𝑉 − 𝑈)N = 𝜌O𝑈N + 2𝑌a. (2.13) 

Not long thereafter, Alekseevski [29] and Tate [30] 
developed theories for long-rod penetration of ductile 
metallic targets that addressed non-steady behavior, 
specifically deceleration of the rod due to finite strengths of 
the projectile ( 𝑌I ) and the target (𝑅O ). The governing 
equation for equal stresses in target and projectile at the 
stagnation point is obtained in this approach by modifying 
the limits of integration in (2.7) and (2.8) such that steady 
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flow does not commence until the stress reaches the 
resistance of either material: 

− J
[R
d𝜎 = 𝜌I

I
KLM 𝜐d𝜐 ⇒ 𝑃 = 3

N
𝜌I(𝑉 − 𝑈)N + 𝑌I; (2.14) 

− J
dT
d𝜎 = 𝜌O

I
M 𝜐d𝜐 ⇒ 𝑃 = 3

N
ρO𝑈N + 𝑅O. (2.15) 

Axial stresses 𝑃 are equated, which gives Tate's extended 
Bernoulli equation: 
3
N
𝜌I(𝑉 − 𝑈)N + 𝑌I =

3
N
𝜌O𝑈N + 𝑅O. (2.16) 

The complete theory developed in [29, 30] includes 
differential equations for projectile deceleration and erosion 
that must be integrated to obtain depth of penetration. Exact 
solutions have been reported in [31]. If deceleration is 
ignored, then the analytical solution for penetration depth is 

JR
SR
= M

MLK
= 3

f
f K\ghLK

fKL K\gh
, (2.17) 

where 

𝜇 = 𝜌O/𝜌I, 𝐴 = 2(1 − 𝜇N)(𝑅O − 𝑌I)/𝜌O. (2.18) 

The equivalent steady state solution can be recovered 
from (2.13) when 𝛾 → 1  and 𝑌a → 𝑅O − 𝑌I . Importantly, 
reduces to the hydrodynamic result (2.10) for very high 
velocities or low material strengths, i.e., when 𝑉N >> 𝐴 . 
Analytical predictions are compared with numerical results 
for metal rods penetrating metal targets in [32]. Such 
comparisons show that target resistance 𝑅O  depends on the 
experimental configuration (e.g., geometry) in addition to the 
target material's properties, implying that generally 𝑅O ≠ 𝑌O. 

Walker and Anderson [33] derived a time-dependent 
analytical-numerical technique to model unsteady long-rod 
penetration of semi-infinite targets. This approach considers 
initial impact, requiring an initial interface velocity from the 
shock jump conditions that will be reviewed later in §3.1, as 
well as rod deceleration. Key assumptions are invoked 
regarding the plastic flow field in the target, obtained from a 
dynamic cavity expansion analysis, and regarding the 
velocity profile in the projectile, obtained from a priori 
numerical simulation. For a limiting case, the analogy of 
Tate's target resistance was found to vary with the dynamic 
ratio 𝛽 of plastic zone size to cavity size: 

𝑅O =
n
4
𝑌Oln[𝛽(𝑉)]. (2.19) 

Dimensional analysis of simulation results [34] for 
metals showed that larger-scale targets tend to be weaker 
than their small-scale counterparts due to rate and time-to-
failure effects. This size effect arises since longer times are 
available for damage mechanisms such as cracks and shear 
localization zones to incubate and propagate in larger targets. 
Similar size effects have also been observed in layered 
ceramic-metal targets [35]. Experiments and hydrocode 
simulations were used to probe the importance of strengths 
of both target and projectile over a range of impact velocities 
in [36]. Strength effects were found to decrease with 
increasing impact velocity, lending credibility to the limiting 

Bernoulli solution (2.10) in the extreme hypervelocity 
regime. Simulation results likewise showed a small effect of 
compressibility on penetration for very ductile metallic 
targets [37]. However, compressibility becomes more 
important in ceramic targets and concrete, for example, 
wherein initial porosity decreases with increasingly high 
compressive pressure, and where strength and pressure are 
coupled in the constitutive response due to frictional effects, 
for example [38, 39, 23]. 

 

 
Fig. (1). Extended hydrodynamic theory based on dimensional 
analysis applied to aluminum oxide (top) and boron carbide 
(bottom) [11]. 

Methods of dimensional analysis have been used to 
provide further insight into parameters and properties 
affecting the ballistic response of metallic [12, 13] and 
ceramic [10, 11] targets. The treatment in [11] is considered 
in further detail in what follows next. The penetration depth 
equation derived therein from dimensional and physical 
considerations is, with 𝛼r  fitting parameters that potentially 
depend on the target material: 
JR
SR
= 3

f
𝛼I + 𝛼3

[R/<R
KR

+ ⋯ ≈ 3
f
1 − 𝛼 [R/<R

KR
, [𝛼I =

1; 𝛼3 = −𝛼]. (2.20) 

This equation was applied to experimental penetration 
data of [40, 41, 42, 43] where target materials encompassed 
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the following polycrystalline ceramics: aluminum oxide, 
aluminum nitride, boron carbide, and silicon carbide. All 
experiments were conducted in reverse mode [7], with long-
rod hypervelocity impact and penetration into confined 
cylindrical ceramic targets. Projectiles were relatively pure 
polycrystalline tungsten. Impact velocities 𝑉I range from 1.5 
to 5.0 km/s. The primary discovery reported in [11] is that 
normalized penetration data for all four ceramic target 
materials can be described well using (2.20) truncated at 
𝛼3 = −𝛼 , with a single fitting parameter, 𝛼 , taking a 
universal value of 3.0. Characteristic results are shown in 
Fig. 1 for alumina and boron carbide, wherein best fits of 𝛼 
provide little improvement over the universal value of 3. 
With 𝛼  thus found independent of target material, 
penetration depth depends only on the properties of the 
projectile (𝑌I and 𝜌I) and the density of the target entering 
the factor 𝜇 = 𝜌O/𝜌I . Thus, static and dynamic strength 
properties and underlying mechanisms would seem to be of 
little influence on penetration depth for this test 
configuration, since otherwise 𝛼 would tend to vary among 
the targeted materials. In future work, parametric numerical 
simulations of the sort discussed later in § 3.3, wherein 
material properties can be varied systematically should 
provide further insight into the origin of 𝛼 for polycrystalline 
ceramics. 

Comparison of results in [11] with another dimensional 
analysis [10] of a different target configuration and velocity 
regime is instructive. This different problem geometry, as 
explained in [7, 44, 45] for example, consists of one or more 
ceramic tiles backed by a semi-infinite ductile metal block. 
Performance of the ceramic is measured by the depth of 
penetration of the projectile into the backing metal. In [10], 
dimensional analysis determined that penetration of 
relatively thin, metal-backed ceramic tiles could be described 
by two parameters that depend on the type of ceramic 
material. One parameter is needed to represent the effect of 
tile thickness. Analysis in [10] found it to be associated with 
the ratio of fracture surface energy to elastic modulus. The 
second parameter describes the relationship between 
penetration depth and impact velocity and appears to be 
related to the ratio of dynamic shear strength to target 
density. Comparison of the dimensional analyses in the two 
papers [10, 11] reveals an apparent transition from fracture- 
and dynamic strength-controlled resistance to mass density-
controlled resistance with increasing impact velocity and 
increasing target thickness or confinement. 

The reduced order models discussed above in § 2.2 
present the following positive features. Effects of strength of 
the projectile and target can be included in the analysis with 
relatively little increase in model complexity. Such effects 
are often important for lower striking velocities, thinner 
targets, or for stiff materials such as ceramics. Solutions are 
relatively easy to obtain, either analytically or via numerical 
quadrature. Drawbacks are that the models remain one-
dimensional, such that effects of lateral boundaries 
associated with finite sized projectile and target 
configurations are omitted. Furthermore, parameters entering 
such models are usually calibrated to match observed trends 
or hydrocode simulation results, rather than obtained from 
first principles or fundamental experiments on constitutive 
behavior. In this sense, the reduced order models tend to be 

prescriptive rather than predictive, though comparison of 
calibrated parameters for different materials subjected to 
similar loading conditions may give qualitative insight into 
underlying physical phenomena. 

2.3. Hydrocode Simulations 

Unlike the 1-D models reported in § 2.1 and § 2.2, 
computer simulations enable depiction of complex 
penetrator-target geometries, i.e., those requiring 2-D or 3-D 
representations. The software used to solve the governing 
equations of continuum dynamics is termed here a 
hydrocode, though the materials involved need not be 
perfectly hydrodynamic. In other words, shear stresses are 
admitted in addition to pressure 𝑝, or the stress tensor 𝛔 need 
not be isotropic. An early summary of hydrocode 
simulations can be found in [9]. The forthcoming 
presentation covers more advanced topics with a focus on 
nonlinear continuum mechanics principles, including finite 
deformations and nonlinear material models. 

The class of models discussed next accounts for large 
strains and rotations, as both may occur during deformation 
of ductile metals [17, 46], and even in ceramics and minerals 
when loading is predominantly compressive [47, 48]. Only 
the essential equations are provided, and Cartesian 
coordinates are implied when index notation is used. For a 
more comprehensive treatment that encompasses curvilinear 
coordinates, see [17], with general kinematics addressed in 
more detail in [49]. Governing equations of finite anisotropic 
elasticity are also given in [50, 51]. 

The forthcoming presentation considers a 
(poly)crystalline solid such as a metal or ceramic material. 
Under conditions of ballistic impact, the material may 
degrade in strength, i.e., undergo a damage process. In the 
present framework, local damage is represented by a scalar 
state variable 𝐷(𝑿, 𝑡) ∈ [0, 1] . Generalization to a vector, 
tensor, or multiple scalars is possible but not undertaken here 
to maintain a terse review. The solid is assumed to be 
hyperelastic and may undergo plastic slip. 

Spatial coordinates of a deformable body are related to 
material coordinates by the time dependent motion 

𝒙 = 𝒙(𝑿, 𝑡) = 𝑿 + 𝒖(𝑿, 𝑡), (2.21) 

where 𝒖  is the displacement vector. The deformation 
gradient is decomposed in multiplicative form as 

𝑭 = ∇I𝒙 = 𝑭z𝑭{𝑭J, (2.22) 

where 𝑭z  includes thermoelastic deformation and 
mechanically reversible changes in damage (e.g., elastic 
crack closure on load release), 𝑭J  accounts for plastic slip 
from dislocations, and 𝑭{  accounts for mechanically 
irreversible damage mechanisms like cracks and voids that 
remain after local elastic unloading. A three term 
decomposition of this general form was proposed in [52]. 
Other deformation gradient representations that account for 
damage explicitly include additive [53, 54, 55] and hybrid 
additive-multiplicative [56, 57] forms, often derived or 
motivated from homogenization of discrete displacement 
jumps due to subscale cracks within a volume element. The 
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volume fraction of damage Ξ is related to the determinant of 
𝑭{: 

det𝑭{ = (1 − Ξ)L3/4. (2.23) 

Besides its use for solids with voids [58, 52] or pores [38, 
23] a multiplicative damage term has been introduced for 
cleavage cracking in crystals of metallic, mineral, or ceramic 
origins [39, 59, 48] 

The local balance laws of continuum mechanics, in 
spatial form, consist of the conservation of mass, linear 
momentum, and energy: 

𝜌 = 𝜌∇ ⋅ 𝛖, ∇ ⋅ 𝛔 + 𝒇 = 𝜌𝛖, 𝜌𝑒 = 𝛔: ∇𝛖 − ∇ ⋅ 𝒒. (2.24) 

The body force vector is 𝒇, the internal energy per unit 
mass is 𝑒, and the spatial heat flux vector is 𝒒. Symbols for 
density, velocity, and stress are the same as those introduced 
in § 2.1. The local balance of angular momentum is not 
solved explicitly, and simply requires that the stress tensor 𝛔 
be symmetric. Point heat sources are not relevant for the 
present scope and are omitted from the energy balance. 
Hydrocode simulations integrate the coupled governing 
partial differential equations in (2.24) in time and space, 
given boundary and initial conditions. The equations in 
(2.24) alone are insufficient: a constitutive model is required 
for each material, providing the mathematical relationships 
among stress, internal energy, the deformation gradient, and 
the latter's history and rate. 

The thermoelastic strain used in standard crystal 
hyperelasticity [17, 50] is the Green strain tensor: 

𝑬 = 3
N
[(𝑭z)�𝑭z − 𝟏], 𝐸�� =

3
N
(𝐹��z 𝐹��z − 𝛿��). (2.25) 

The thermoelastic volume change is measured by 𝐽z =
det𝑭z . Other more recent formulations have used other 
strain tensors, including Eulerian and logarithmic tensors 
referred to material coordinates, with improvements over the 
Green strain representation for metals, ceramics, and 
minerals [47, 60, 48, 61, 62] Substitution of 𝑬 with one of 
these alternative strain tensors is relatively straightforward. 
Herein, following the standard approach, Cauchy stress 𝛔 is 
related to elastic second Piola-Kirchhoff stress S via 

𝛔 = 3
��
𝑭z𝑺(𝑭z)�, 	  𝜎r� =

3
��
𝐹r�z 𝑆�S𝐹�Sz. (2.26) 

An internal energy function per unit mass, with 
corresponding temperature-entropy relation, is 

𝑒 = 𝑒(𝑬, 𝜂, {𝜉}) = 𝑒(𝑬, 𝜂, 𝜌{, 𝐷, … ), 𝑇 = ∂𝑒/ ∂𝜂. (2.27) 

with {𝜉} a set of internal state variables that affect the energy 
stored in the solid, e.g., dislocation density 𝜌{ and damage 
𝐷. This damage variable 𝐷 presumably varies from zero to 
unity as the material at the corresponding point loses 
integrity. The thermoelastic stress-strain relation for an 
arbitrary anisotropic hyperelastic solid is 

𝑆�� = 𝐽z𝜌 *�
*z��

= 𝐶���S𝐸�S +
3
N!
𝐶���S�a𝐸�S𝐸�a +

3
4!
𝐶���S�aJ�𝐸�S𝐸�a𝐸J� + ⋯− 𝑇IΓ��Δ𝜂 − ⋯, (2.28) 

where 𝐶���S⋯  are isentropic elastic coefficients of second- 
and higher orders, Δ𝜂  is entropy change measured from a 
reference state at temperature 𝑇I , and Γ��  are Gru neisen 
coefficients. Elastic moduli depend on damage. The simplest 
degradation model of the moduli is linear in 𝐷: 

𝑪[𝐷(𝑿, 𝑡), 𝑿] = [1 − 𝐷(𝑿, 𝑡)]𝐶I(𝑿), (2.29) 

with 𝑪I(𝑿) = 𝑪(0, 𝑿)  the tensor of elastic moduli for the 
undamaged (poly)crystal at the corresponding material point. 
More sophisticated approaches are needed to realistically 
capture physics of arbitrary loading cycles, e.g., such as 
damage induced anisotropy and differences in tensile and 
compressive degradation. 

The viscoplastic flow rule is often of the general form 

𝑭J = 𝑭J(𝑺, 𝑇, {𝜉}, 𝑭J), (2.30) 

where 𝑺  can be replaced with the most appropriate stress 
tensor for the corresponding configuration space. Kinetic 
equations must likewise be supplied for time rates of 𝑭{ and 
internal state variables, for example 

𝑭{ = 𝑭{(𝑬, 𝜂, {𝜉}, 𝑭{), {𝜉} = {𝜉}(𝑬, 𝜂, {𝜉}). (2.31) 

Dependence on elastic strain, entropy, and internal state 
variables is perhaps more physically meaningfully 
substituted with dependence on stress, temperature, and 
conjugate thermodynamic driving forces. The local balance 
of energy in the last equation in (2.24), for adiabatic 
conditions often appropriate in impact dynamics, can be 
expressed as a temperature rate equation: 

𝑇 = ¤({¥})
¦

𝑊 − 𝑇𝚪: 𝑬, (2.32) 

where 𝑐  is the specific heat per unit volume at constant 
thermoelastic strain, 𝑊  is the dissipated energy rate from 
plasticity and damage mechanisms, and 𝛽 is the fraction of 
dissipation converted to heat energy, i.e., the fraction of 
stored energy of cold work is 1 − 𝛽. Theory and simulations, 
including a representative result in Fig. 4 of [14], have 
demonstrated links among microstructure (e.g., dislocation 
density), stored energy of cold working, and ballistic 
penetration resistance of metallic targets (see also [15]). 

In addition to the governing partial differential equations 
for the bulk response of materials, physics-based model 
representations of contact between impacted bodies must be 
introduced, accounting for momentum transfer and possible 
frictional effects. Furthermore, means for addressing 
complete failure of the material in numerical frameworks 
become essential since element distortions, if too large, 
render Lagrangian finite elements inaccurate. Perhaps the 
simplest such method is finite element deletion, where a 
given element is suitably eliminated from the calculation 
when its strength vanishes [63]. This approach, 
unfortunately, does not always ensure that all conservation 
laws of (2.24) are obeyed consistently upon failure. Another 
approach involves conversion of Lagrangian finite elements 
to interacting particles when large strain thresholds 
associated with failure are attained [64]. Results of a 
simulation invoking this approach, specifically addressing 
dynamic fragmentation of concrete targets, are shown in Fig. 
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10 of [38]. Other more recent methods such as extended 
finite elements (X-FEM) [63, 65] and discrete element 
methods [66], which even if less prevalent in hydrocodes, 
may better satisfy the conservation laws and thus allow for a 
more realistic description of dynamic fracture and 
fragmentation. 

Relative to hydrodynamic theory and its extensions 
discussed in § 2.1 and § 2.2, hydrocode simulations offer 
many advantages. As noted already, complex geometries can 
be resolved, for example heterogeneous, layered targets of 
finite dimensions [67, 16]. Stress wave interactions can be 
visualized via modern post-processing tools. Material 
behavior can be sophisticated and realistic, with nonlinear 
constitutive models of the sort discussed above enabled. The 
primary disadvantage of hydrocode modeling is the cost. 
Firstly, the code or software must be obtained or written, the 
latter an imposing endeavor requiring expertise in continuum 
physics and computer science. Secondly, solutions to most 
impact problems are computationally expensive, with cost 
tending to increase with model complexity, both geometric 
and material. Time step size for explicit integration is 
restricted by the Courant condition, which limits the total 
time duration over which the momentum equations can be 
integrated. In other words, impact events can only be 
simulated over short time periods. The maximum time step 
size becomes smaller for finer meshes and stiffer materials, 
making simulations of small and stiff structures very 
expensive. Finally, constitutive models for the material 
response may require calibration, ideally via comparison 
with data from fundamental experiments rather than 
matching to ballistic data. The latter situation is sometimes 
unavoidable, however, depending on availability of test data 
and/or any deficiencies in the physical model for the 
material. 

3. PLANAR SHOCK WAVES 

Methods for modeling the response of solids subjected to 
shock wave propagation, typically induced by planar impact, 
are now addressed. In § 3.1, the classical sharp interface 
treatment of a steady planar shock passing through a 
homogeneous material is reviewed, with the Rankine-
Hugoniot jump conditions the primary results. For relatively 
simple kinds of constitutive laws, the 1-D equations can be 
solved simultaneously and analytically, though not always in 
closed form. In §3.2, another 1-D treatment is presented for 
analysis of planar shock waves, where steady state behavior 
is presumed, but the shock width is finite and is an outcome 
of the analysis. The computational methods of §3.3 resolve 
transient details of the shock as it travels through 
heterogeneous microstructures. Of keen interest is the 
predicted response of polycrystalline materials pertinent to 
munitions (metals) and armors (ceramics) often featured in 
ballistic applications of §2. 

3.1. Hugoniot Jump Conditions and Analytical Solutions 

The present analytical approach to modeling planar 
shocks in metals, ceramics, and geologic materials involves 
simultaneous solution of the Rankine-Hugoniot jump 
conditions for conservation of mass, momentum, and energy, 
along with constitutive equations for the physical behavior of 

the particular material system. Constitutive laws may be 
elastic, elastic-plastic, or elastic-plastic with damage. The 
onset of inelastic response corresponds to the Hugoniot 
Elastic Limit (HEL); shocks of strength at or exceeding this 
value induce irreversible deformation mechanisms such as 
slip, twinning, pore collapse, and/or fracture. 

For elastic-plastic single crystals, the technique described 
here and in [68] can be applied only for high symmetry 
orientations: for example shocks propagating along [100] 
and [111] directions in FCC and BCC crystals or along 
[0001] directions in HCP crystals. Such symmetries reduce 
the problem to simultaneous solution of a yield condition 
and energy balance for the cumulative plastic slip and 
entropy, with the remaining conservation and constitutive 
laws sufficient for determination of the downstream material 
state. Downstream refers to material behind the plastic shock 
wave, and upstream to material ahead of the shock. For 
lower symmetry geometries, transverse waves would appear, 
and the 1-D description would be an approximation, often 
severe. 

Considered is a planar shock moving at natural velocity 
𝐷  in the Lagrangian direction 𝑋 , across which velocity, 
stress, and deformation gradient are discontinuous. Let (⋅)g 
and (⋅)L  denote values of a quantity upstream and 
downstream from the shock. The jump of a quantity across 
the shock plane is then 

[ ⋅ ] = (⋅)L − (⋅)g. (3.1) 

Denote by v = 𝜐 − 𝐷 the velocity of the material relative 
to the shock front, with 𝜐  the particle velocity for 1-D 
motion. The Cauchy stress component normal to the front is 
equal to the negative of the shock pressure: 𝜎 = −𝑃 . The 
internal energy per unit mass is 𝑒, the mass density 𝜌. Then 
the Rankine-Hugoniot equations for a steady planar shock 
are written as the following jump conditions for mass, linear 
momentum, and energy [69]: 

𝜌v = 0, 𝜎 − 𝜌v v = 0, [[𝜌v(𝑒 + vN/2) − 𝜎v]] = 0.
 (3.2) 

The deformation gradient is uniaxial, i.e., 𝑭 = 𝟏 +
(∂𝑢/ ∂𝑋)𝒏 ⊗ 𝒏, where 𝒏 is a unit vector in the direction of 
motion 𝑋  and 𝑢(𝑋, 𝑡)  the displacement component in this 
direction. The above system of equations becomes closed 
upon prescription of the constitutive model relating uniaxial 
deformation gradient, internal energy, and stress 
components. Such constitutive models belong to the general 
class of theories outlined in § 2.3, and for elastic-plastic 
single crystals, those further elaborated in §3.3. 

Closed form analytical solutions have been derived for 
ideal cases. Perfectly compressible fluids were analyzed in 
[70]. A solution valid for nonlinear elastic, anisotropic 
crystals or polycrystals incorporating the Green strain of 
(2.25) is presented in [50]. Analytical solutions for 
anisotropic single crystals in the context of (material) 
Eulerian strain and logarithmic strain were first derived in 
[47] and [48], respectively. Subsequent evaluation of 
solutions versus shock data for a number of single crystals 
[60, 62] determined that Eulerian theory is often most 
accurate for ductile metals, while logarithmic theory is 
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preferred for strong ceramics with a relatively high ratio of 
shear to bulk modulus. 

Analytical solutions can also be obtained, not necessarily 
in closed form, for materials undergoing inelastic behavior 
such as plastic slip. Isotropic elastic-plastic solids were 
addressed in [69, 71]. More recently, incremental analytical 
methods have been developed to account for multiple yield 
limits in isotropic polycrystals, as shown in Fig. 1 of [72] for 
the ceramic titanium diboride. Anisotropic elastic-plastic 
single crystals have been addressed in [48, 68]. In this case, 
the aforementioned restrictions on symmetry with respect to 
shock propagation direction apply, and inelastic deformation 
is of the form 

𝑭J(𝛾) = exp 𝛾 ± 𝒔± ⊗𝒎± = 𝟏 + 𝛾 ± 𝒔± ⊗𝒎± +
3
N
𝛾N ± 𝒔± ⊗𝒎± N + 3

´
𝛾4 ± 𝒔± ⊗𝒎± 4 + ⋯. (3.3) 

The cumulative shear 𝛾  thus encompasses the entire 
deformation history in a single kinematic parameter. The slip 
direction and slip plane normal vectors for system 𝛼 are 𝒔± 
and 𝒎±. A one parameter model for strength is also typically 
prescribed, though history effects can be admitted without 
much more complexity [48]. Results of this type of analysis 
are shown in Fig. 5 of [48] for single crystal diamond 
shocked along a cube axis, a very strong solid which could 
undergo slip or cleavage on its octahedral planes when 
shocked above its HEL. 

Advantages of the method of analysis described here in 
§3.1 include relative simplicity: few material parameters are 
needed, and solutions are obtained nearly instantly. The 
method is flexible enough to incorporate various nonlinear 
anisotropic thermoelastic potentials. Disadvantages are that 
only isotropic solids or highly symmetric orientations can be 
modeled and time dependent effects such as viscosity (e.g., 
explicit strain rate effects on strength) are omitted. Finally, 
because shock is treated as a perfect jump discontinuity, no 
information regarding its structure such as shock width or 
values of state variables within the shock front is obtained. 
While only a single fitting parameter may be required as in 
[68], its value must still be prescribed via comparison with 
shear strength data from experiments or results of an 
independent model of material response. 

For materials undergoing inelastic response, this class of 
models can be used effectively and efficiently to probe 
possible underlying mechanisms such as slip, cleavage, 
twinning, and pore collapse by analyzing various 
orientations and comparing theoretical yield criteria with test 
data [73, 74, 75]. The resulting information can be used to 
inform equations or parameters of more sophisticated 
material models such as those invoked in steady wave or 
fully resolved finite element calculations of §3.2 and §3.3. 
Furthermore, a model can be developed for one orientation 
or symmetry by calibrating to test data then used to predict 
behavior for another configuration for which data may be 
unavailable [23]. 

3.2. Steady Wave Solutions 

The steady wave class of modeling shock waves involves 
transformation of governing partial differential equations of 
dynamic continuum mechanics to ordinary differential 

equations relative to a coordinate frame that moves along 
with a steady (i.e., constant velocity) wave. The steady wave 
method has been invoked to study plastic shocks in isotropic 
solids in [76, 77]. The first theory and application of the 
method towards anisotropic elastic-plastic crystals were 
described in [78], with supplementary studies involving this 
method as well as finite difference simulations reported in 
[79, 80, 68]. 

The system of equations whose simultaneous solution is 
sought in a steady wave analysis consists of the following 
continuity and momentum conservation laws [68]: 
=A
=[
= −𝐷 =V

=[
, =J
=[
= 𝜌I𝐷

=A
=[
. (3.4) 

The shock velocity is 𝐷, and 𝑌 = 𝑋 − 𝐷𝑡 is a coordinate 
moving with steady velocity in the direction 𝑋  of shock 
propagation. The deformation is again presumed uniaxial, 
i.e., 𝑭 = 𝟏 + (∂𝑢/ ∂𝑋)𝒏 ⊗ 𝒏  as in § 3.1, and 𝜆 = 1 +
∂𝑢/ ∂𝑋  is the axial compression ratio. The system of 
equations also includes those of the constitutive model, 
which falls into the classes described in §2.3, and may be of 
any degree of sophistication so long as symmetry respects 
the unaxial kinematic condition. Time differentiation 
entering kinetic equations for the constitutive model is 
transformed to differentiation with respect to the moving 
coordinate 𝑌 . In general the coupled system of governing 
ordinary differential equations must be integrated 
numerically. This contrasts the less advanced material 
models for which analytical solutions to jump conditions are 
restricted in § 3.1. For certain simple cases of isotropic 
material response, analytical solutions to the continuous 
steady wave problem may be possible [76]. 

Advantages of the steady wave method include the 
following: a detailed description of the steady shock 
structure is obtained, solutions are obtained at relatively low 
computational cost, no artificial viscosity is used (unlike 
many finite difference and finite element simulations of 
strong shocks), and sophisticated rate- and temperature-
dependent constitutive models are enabled. An example of 
achievable results is shown in Fig. 11 of [78], which 
demonstrate effects of lattice orientation and shock pressure 
on shock width in aluminum. The assertion of low 
computational expense has been verified via comparison 
with (more lengthy) finite difference simulations of the same 
physical problem [68]. The computational efficiency of the 
steady wave method facilitates its role as a tool for 
investigating and parameterizing advanced constitutive 
models for subsequent use in more expensive, fully resolved 
simulation frameworks. 

Disadvantages result from the symmetry and steadiness 
restrictions. Accordingly, effects of transverse waves for 
non-symmetric crystal orientations are ignored, unsteady 
waves cannot be addressed, and material properties must be 
spatially homogeneous. Only fully resolved simulations such 
as finite difference calculations or explicit finite element 
simulations of the class described next in §3.3 are capable of 
quantifying transient aspects of evolving shock waves. 
Important transient effects include elastic precursor decay 
and wave interactions, e.g., tensile reflections leading to 
spall failure. Fully resolved methods must be used to account 
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for heterogeneous microstructures and for quasi-longitudinal 
and quasi-transverse waves that arise in low symmetry 
crystal orientations. 

3.3. Dynamic Finite Element Analysis of Microstructures 

Unlike the models of planar shock propagation evaluated 
in § 3.1 and § 3.2, wherein geometries of the solid are 
restricted to a single space dimension (i.e., 1-D), in fully 
resolved dynamic calculations of §3.3, the geometry may be 
2-D or 3-D. Furthermore, morphology of microstructure---
grain sizes, grain shapes, grain boundaries, secondary phases 
at grain boundaries, and so forth---are now resolved 
explicitly. Geometric rendering of complex polycrystalline 
geometries via finite elements is non-trivial, with the 
procedure described for polyhedral grains, for example, in 
[81, 82] and references therein. 

The present focus is on models wherein single crystals 
within each polycrystal are resolved explicitly, as 
represented in crystal elastic or elastic-plastic simulations of 
realistic microstructures [54, 83, 81, 84, 85, 86]. The 
constitutive models for response of the material in a dynamic 
finite element context are a subset of the general class of 
nonlinear continuum thermomechanics models discussed in 
§3.3. For single crystals that undergo plastic deformation, 
the plastic velocity gradient is the sum of contributions of 
slip rates 𝛾±, where the superscript denotes a slip system for 
dislocation glide with direction 𝒔± and plane normal 𝒎±: 

𝑳J = 𝑭J𝑭JL3 = ± 𝛾±𝒔± ⊗𝒎±. (3.5) 

The slip direction and slip plane normal are orthogonal 
and of unit length, i.e., are those of the crystal lattice prior to 
thermoelastic deformation. Denoting the resolved shear 
stress acting on a system by 𝜏±, the flow rule for slip rates is 

𝛾± = 𝛾±(𝜏±, 𝑇, {𝜉}), 	  𝜏± = 𝐽z𝛔: [𝑭z𝒔± ⊗ (𝑭z)L�𝒎±]. (3.6) 

When regions of very large defect density are 
encountered, (2.22) may be insufficient when 𝑭J  is 
attributed to dislocation slip processes alone as in (3.5). An 
intermediate term, denoted here by 𝑭� , can be used to 
quantify residual lattice deformation due to defects within 
the local volume to which (2.22) is assigned: 

𝑭 = ∇I𝒙 = 𝑭z𝑭�𝑭J. (3.7) 

Here it is assumed that damage is absent within the single 
crystal; otherwise, 𝑭{ may be appended to the right side of 
(3.7). The particular form of 𝑭�  depends on the class of 
defect, defect arrangement, and scale of resolution, as 
derived via a number of theoretical methods, [83, 87, 88, 89, 
90, 91, 92, 17]. Analysis has demonstrated the importance of 
inclusion of 𝑭�  in the constitutive description when 
dislocation densities approach the theoretical maximum, 
which is possible for severe plastic deformation or shock 
loading [73, 91]. Since 𝑭J is isochoric when attributed solely 
to slip, any residual volume changes in the crystal are 
omitted if not captured by 𝑭�. Lattice rotations induced by 
disclinations may be described by rotational part of 𝑭� [93], 
and volume changes associated with point defects such as 
vacancies or interstitial atoms may incorporated as well [94, 
95]. 

Also not addressed explicitly in equations herein is the 
possibility of deformation twinning. This phenomenon is 
observed in many kinds of crystals deformed at high loading 
rates, especially those of lower symmetry and low stacking 
fault energy. Models invoking pseudo-slip kinetics [96, 97, 
73, 98, 99, 75] or phase field descriptions [100, 101, 102, 
103, 104] have been implemented in numerical simulations 
of twinning processes in single crystals and polycrystals. 
Phase transformations can likewise be included via diffuse 
interface modeling [105] or other prescribed criteria in 
continuum frameworks. An example result of a dynamic 
polycrystal simulation incorporating the latter is shown in 
Fig. 3 of [86], wherein the crystal-to-glass solid-solid 
transformation in shocked boron carbide is modeled via an 
intrinsic nonlinear elastic instability criterion [106, 107]. 
Quantitative data from 3-D simulations demonstrating 
validity of the continuum theory for boron carbide versus 
planar impact experiments are shown in Fig. 4(a) of [86], 
with further comparisons to various analytical, atomic, and 
experimental results listed in Table 4 of that reference. 

Cohesive fracture models are now a standard 
representation of failure of the material at the mesoscale, i.e., 
the length scale of polycrystalline microstructures of the 
order of the grain size. The first explicit dynamics 
simulations coupling finite crystal plasticity with cohesive 
failure seem to be those reported in [54, 84] with a follow-up 
study of spall in [20]. Key equations, in generic forms, for 
cohesive fracture models of the sort implemented in spall 
fracture simulations such as that in Fig. 5 of [84] and others 
in [20, 21] are reviewed in what follows next. Quantitative 
comparison of cohesive finite element results with spall 
fracture experiments is obtained by inspection of Figs. 10 
and 26 of [20]. 

Let the crack opening displacement vector across two 
crack faces initially coincident at point 𝑿 be defined as the 
displacement jump 

𝛅 𝑿, 𝑡 = [[𝒖 𝑿, 𝑡 ]], (3.8) 

where displacement 𝒖  need be continuous with respect to 
position only within regions of the body that have not 
undergone fracture. The unit vector 𝒏(𝑿) is normal to the 
surface of impending fracture. Let 𝒕I  denote the traction 
vector per unit reference area: 

𝒕I = 𝑷 ⋅ 𝒏, (3.9) 

with 𝑷 = (𝜌/𝜌I)𝛔𝑭L�  the first Piola-Kirchhoff stress. A 
traction-separation law is prescribed in the cohesive zone of 
a generic functional form: 

𝒕I = 𝒕I(𝛅, {𝜒}). (3.10) 

Possible history effects are addressed by state variable(s) 
{𝜒}. A magnitude of displacement 𝛿»  is usually assigned as a 
material property, beyond which traction vanishes and the 
formerly cohesive surfaces become free surfaces. For 
simulations invoking explicit numerical integration, a 
stiffness matrix is usually not needed, in which case the 
traction function need not have a continuous derivative with 
respect to opening displacement. The work done during 
separation can be related to a surface energy of fracture Υ: 
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Υ = 3
N

½¾
I 𝒕I ⋅ d𝛅, (3.11) 

where the path of integration ends when the critical 
separation magnitude is attained. A commonly used model is 
the triangular cohesive degradation function 

( )0 1 /C Cσ δ= − δt  |𝑡I| = 𝜎»(1 − |𝛅|/𝛿»). (3.12) 

This law can be invoked separately for each magnitude | ⋅ | 
of normal and shear components of traction and opening 
displacement. The resolved scalar stress component at which 
the cohesive zone starts to open is 𝜎» , i.e., is the strength 
required to initiate fracture or separation. Only two of the three 
parameters Υ , 𝜎» , and 𝛿»  must be assigned since (3.11) 
eliminates one of these algebraically. More sophisticated 
models accounting for mode mixity and other physical 
behaviors have been implemented [108, 109] but often at the 
cost of additional calibration or parameters. 

Cohesive failure models allow for realistic modeling of 
dynamic failure of microstructures, including crack speeds, 
branching, and stress wave interactions. Crack sizes and 
shapes are fully resolved. Positives of this class of model 
include relatively few parameters [minimally two, e.g., 𝛿»  
and 𝜎»  in the context of (3.12)] and distinct behavior of 
interfaces and bulk material, meaning that traditional solid 
continuum elements can be used for representing the latter. 
However, more parameters are needed to account for 
distributions of strengths and surface energies among 
potential failure sites in more realistic simulations of 
heterogeneous materials. Anisotropy and nonlinearity of the 
bulk crystal response can be incorporated via the physically 
rigorous theory outlined in §2.3 and earlier in §3.3. 

Compared to analytical solutions to the Rankine-
Hugoniot jump conditions of §3.1, or to numerical solutions 
to the 1-D equations of motion under the steady wave 
assumption in § 3.2, explicit dynamics calculations are 
obtained at very high expense. Mesh generation procedures 
for realistic microstructures are often tedious and 
cumbersome, implementation of complex anisotropic elastic-
plastic constitutive models is difficult, and integration of the 
governing equations of nonlinear continuum mechanics in 
conjunction with the equations of these constitutive models 
is computationally costly. As remarked already in §2.3, the 
Courant condition setting the maximum time step size 
becomes prohibitive for very small element sizes which in 
turn are unavoidable for modeling of polycrystals of grain 
dimensions on the order of a few micrometers or less. On the 

other hand, the reduced order (1-D) models in §3.1 and §3.2, 
while enabling sophisticated constitutive models for single 
crystals or homogenized polycrystals with overall textures, 
do not account for details of microstructure morphology. 
Grain sizes, grain shapes, and grain boundary geometries are 
all omitted, as are failure entities such as discrete fracture 
planes, individual voids, and distinct adiabatic shear bands. 
In contrast, all of these effects are potentially included in 
fully resolved calculations of §3.3. Thus, only the latter fully 
resolved calculations offer the possibility of optimization of 
materials at the micro- or mesoscale for improved 
performance (e.g., ballistic penetration resistance). 
Furthermore, such calculations may serve as a source of 
fundamental functional forms and/or material parameters for 
constitutive model equations invoked at higher length scales. 
See for example [54, 14, 15, 81] for examples of this 
sequential multiscale approach applied to metals and 
ceramics for protection applications. 

Numerical implementation of cohesive models is deemed 
straightforward, but additional nodal degrees of freedom 
increase the computational expense where duplicate nodes 
are inserted along failure planes. A limitation is that fracture 
paths are constrained to follow element boundaries. When 
fractures are restricted to pre-existing interfaces such as 
grain or phase boundaries, cohesive finite elements can be 
seeded a priori along such pending failure surfaces. Cleavage 
fracture on specific planes can also be depicted [110]. 
Extremely fine meshes are often necessary for representing 
the small fracture process zones of materials with high 
strength and low surface energy; see for example the spall 
simulations of polycrystalline silicon carbide in [21]. 
Another class of models used to represent fracture of 
microstructures, not considered further here, invokes the 
phase field (i.e., diffuse interface) concept [111, 112, 113, 
82, 114] in contrast to the sharp interface assumption 
inherent in the cohesive finite element method. 

4. CURRENT AND FUTURE DEVELOPMENTS 

Current modeling techniques describing two kinds of 
physical problem---ballistic penetration and planar shock 
wave propagation---have been presented and compared. For 
each kind of problem, models have been categorized as 
analytical, reduced order, or fully resolved. Perspectives on 
relative complexity, generality, and phenomenology are 
summarized in Table 1. Trends are an increase in flexibility 
(i.e., increased fidelity of physical description) with 
increasing complexity/sophistication, albeit usually at the 

Table 1. Classes of impact mechanics models, examples, and general characteristics. 

  Analytical (1-D)  Reduced Order (1-D)  Fully Resolved Dynamics (2-D or 3-D)  

Examples: penetration mechanics   Bernoulli hydrodynamics   Extended hydrodynamics   Hydrocode simulations  

Examples: planar impact   Hugoniot solutions   Steady wave analysis   Explicit finite element simulations  

Complexity (usual governing equations)   Low   Moderate   High  

Generality (usual physics addressed)   Low   Moderate   High  

Phenomenology (typical calibration and parameters)   Low   High   Moderate  
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expense of increasing number of fitted parameters or 
equations. These trends are general, and exceptions of course 
are possible. 

It is emphasized that only the fully resolved dynamic 
simulations, though computationally costly, are able to 
provide insight into effects of fine scale microstructures of 
materials involved. Such effects are implicitly embedded 
within parameters entering reduced order and analytical 
treatments, but their origins are not evident in such cases, 
thus prohibiting computationally driven materials design. In 
contrast, modern simulations at multiple length and time 
scales are becoming increasingly important in development 
and optimization of advanced functional materials for high 
rate applications such as those related to terminal ballistics. 
Future developments will advance such material system 
design via computer simulations. 
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